If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2=735
We move all terms to the left:
3p^2-(735)=0
a = 3; b = 0; c = -735;
Δ = b2-4ac
Δ = 02-4·3·(-735)
Δ = 8820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8820}=\sqrt{1764*5}=\sqrt{1764}*\sqrt{5}=42\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{5}}{2*3}=\frac{0-42\sqrt{5}}{6} =-\frac{42\sqrt{5}}{6} =-7\sqrt{5} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{5}}{2*3}=\frac{0+42\sqrt{5}}{6} =\frac{42\sqrt{5}}{6} =7\sqrt{5} $
| 1/3|3x+9|-5=4 | | -4p6^2-1=197 | | n+n+n+2+n+4=57 | | 7y-20+47+90=180 | | 6u-41=7 | | 3/z-9=1 | | 28=3(v-4)+7v | | 7z^2=1526 | | 5x-7=5x-9 | | -2(p-7)=15 | | 2y+4y+6y+4y=180 | | 9+4y=8 | | z^2-10=18 | | 6x5-(3x3+7)-5x3=-1 | | -3=5x+7(x+3) | | 6n^2=-866 | | (8+1/2)x=40 | | 2.7x=13.5 | | 15-0.25w=28 | | 1/2x+8=2(x-8) | | 10r-4=-154 | | -1-8p=-1-8p | | 18=3(u-3)+6u | | -2/4x-9=9/10 | | -7x^2-9=345 | | 2-3/4x=10 | | 2r2–6r+1=0 | | 49-8x=13+10x | | -8(c-5)=48 | | -4h^2=324 | | w/5-16=4= | | 4–14=5x |